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Synopsis 

The processes of adsorptive and reactive dyeings of polymer film in a finite bath were formulated 
on the basis of pore model concept. The influence of the bath ratio on the fractional uptake or 
fixation was numerically analyzed. The time of half-dyeing is proportional to the bath ratio to the 
power of about 0.9 within the present computational conditions. This fact is in contrast to the finding 
that, in an infinite bath with the same dye concentration as the initial value in a finite bath, the time 
of half-dyeing is inversely proportional to the dye concentration. The relation of the total uptake 
or fixation to the dimensionless dyeing time 0 multiplied by is independent of the bath ratio 
within an error of 5% or 8%. 

INTRODUCTION 

The dyeing of textiles is considered a combined process comprised of intrdiber 
diffusion of dye molecule or ion and chemical reaction with or adsorption upon 
the fiber substrate. From this standpoint, chemical engineering approaches 
to transport phenomena in multiphase systems may be applied to the analysis 
and synthesis of the dyeing process. 

In the previous paper,l the process of dyeing of hydrophilic textile fiber was 
formulated on the basis of diffusion of dyestuff in pores within fiber accompanied 
by chemical reaction or adsorption, viz., the pore model, and the validity of the 
proposed model was confirmed by comparison with existing experimental data 
on dyeings of reactive dyes in cellulose and acid dyes in nylon. The dyebath, 
however, had been assumed to be infinite in order to make such comparison 
possible. The practical dyeing processes are usually operated batchwise, and 
the concentration of dye liquor in a bath is apt to decrease as the dyeing pro- 
ceeds. 

In this respect, the dyeing process should be distinguished from adsorption 
and solid-catalyzed reaction in multiphase transport phenomena. That is, the 
latter systems are usually operated continuously. 

It was proved in the previous work1 that the transfer of dye species in a hy- 
drophilic textile fiber can be formulated by the pore model stated above. In the 
present paper, thus, the previous treatment on reactive and adsorptive dyeings 
was extended to that for a finite dyebath and the influence of the bath ratio, i.e., 
volume of dye liquor per unit volume of polymer phase to be dyed, on the dyeing 
rate or time variation of fractional uptake or fixation was mainly discussed. 

SIMULATION MODEL OF DYE-IMMOBILIZATION PROCESS 

Adsorptive Dyeing 

Consider the case where a dyestuff A diffuses into pores of polymer phase, 
simultaneously adsorbing upon the substrate sites which are distributing uni- 
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formly on the wall of pores. The rate of adsorption of the dye species can be 
expressed by k , C A  ( q i  - q A ) ,  while the rate of desorption of the adsorbed dye 
species can be expressed by k d q A .  The diffusion of dye is controlled by the 
one-dimensional Fick’s equation. Thus, the conservation equations in the pores 
and adsorbed phase can be written as 

The dyebath is operated in a finite volume of dye liquor, and the polymer phase 
is regarded as being a slab with thickness 2L but not a cylindrical fiber, The 
initial and boundary conditions to be imposed are 

t > 0, x = 0, CA = C A ~  (variable) 

- 0  t > 0 ,  x = L ,  ~- dCA 
dx 

Here u represents the volume of dye liquor per unit surface area of the polymer 
phase. Equation (5) implies that the reduced amount of dyestuff in the bath 
is equal to the total amount of diffusion into the polymer phase. As the dyeing 
proceeds, only the concentration of dyestuff in the bath decreases according to 
eq. (51, but the other conditions such as temperature, pH of dyeing liquor, and 
salt concentration are assumed to remain unchanged. Equation (6) reflects 
symmetry of the polymer phase. The analysis based on the above formulation, 
which considers only one half of the slab, might give by analogy the dyeing be- 
havior in a cylindrical fiber. 

W A  = 
q A / q j ,  5 = x /L ,  and 8 = DAt/L2, the basic mass balance equations (1) and (2) 
are rewritten in the dimensionless form as 

After introducing such dimensionless variables as YA = C A / C A O ,  

with the initial and boundary conditions 

8 = 0 ,  E > O ,  Y A = ( . d A = o  
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- 0  a Y A  

a t  
e > o ,  t=1,  -- 

Here the parameter Ma is defined by k a q i L 2 / D A  and is equivalent to the square 
of the adsorption-diffusion modulus. y is the initial dimensionless concentration 
of dye in the bath, which is defined by c A O / q i ,  and ulL is equivalent to the bath 
ratio for a plane slab. 

When the adsorption equilibrium is instantaneously attained, W A  is related 
to YA by 

and, accordingly, the mass balance equation in the polymer phase is put into 

A convenient way to express computational results is in terms of fractional up- 
take. The local fractional uptake is given by W A  , whereas the total fractional 
uptake is defined by 

Reactive Dyeing 

The reactive dyeing can be regarded as a process in which a dyestuff A diffuses 
into a polymer phase, reacting with the substrate S dispersing uniformly within 
the phase. The reaction between the dyestuff and the substrate is assumed to 
be of second-order relative to both species and the diffusion of dye is in one- 
dimensional media. Then, conservation equation of the dyestuff in the polymer 
phase is described as 

If the stoichiometric factor for the reaction is v, viz., A + US - P, the rate of 
consumption of the substrate can be written as 

Also, the dyebath is considered to be finite and the polymer phase is regarded 
as a slab with thickness 2L but not a cylindrical fiber. The initial and boundary 
conditions are 

t = 0 ,  x >o,  C A  = o ,  c S = c S O  (18) 

t = = 0,  C A  = CAO (19) 

t > 0, x = 0, CA = C A ~  (variable) 
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- 0  dCA t > 0 ,  x = L ,  -- 
d X  

Only the concentration of dyestuff in the bath changes according to eq (201, 
whereas it is assumed that the other conditions such as temperature, pH of dyeing 
liquor, and salt concentration are also kept constant. 
in the dimensionless form can be written as 

The conservation equation 

(22) 

(23) 

subject to 

Here the parameter M is defined by k C s d 2 / D A  and is equivalent to the square 
of the Thiele modulus, and the parameter y is the initial dimensionless con- 
centration of dye in the bath which is here given by VCAO~CSO.  

The local and total fractional fixation are defined as 

and 

respectively. 

COMPUTATIONAL RESULTS AND DISCUSSION 

The solution of the basic mass balance equations (1) and (2) or (16) and (17) 
poses a nonlinear boundary value problem. Accordingly, the simultaneous 
differential equations with the relevant initial and boundary conditions were 
numerically solved by using the quasilinearization technique proposed by 
Lee.2 

If the total amount of dyestuff fed batchwise to the bath is constant, the con- 
centration of dye liquor should be inversely proportional to the volume of dyebath 
per unit volume of polymer phase to be dyed, viz., the bath ratio will have a sig- 
nificant influence on the dye-immobilization process. Figure 1 shows a typical 
example of the influence of the bath ratio upon the spatial distribution of im- 
mobilized dye in the polymer phase for adsorptive dyeing, where the Langmuir 
adsorption equilibrium is instantaneously established. It is obvious that the 
fractional uptake increases with decreasing the bath ratio, and the concentration 
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Fig. 1. Effect of bath ratio on spatial distribution of adsorbed dye for adsorptive dyeing: 

Curve UlL Y KACAO 

1 20 0.05 10 
2 10 0.1 20 
3 5 0.2 40 
4 2 0.5 100 

of dye on the surface of polymer phase gradually decreases as the dyeing process 
proceeds. The variation of the total amount of adsorbed dye and the concen- 
tration of dye in the bath with the dyeing time were shown for various bath ratios 
in Figure 2. The fractional exhaustion commonly used is equal to 1 - Y A ~ .  At 
the limit when 8 - 00, eq. (11) reduces to 

YAi = 1 - (u/L) [EYAi + (1 - f)wtot/r]  (30) 

where wtot is given by the adsorption equilibrium relationship (Langmuir ad- 
sorption isotherm): 

Fig. 2. Total uptake and dimensionless dye concentration in the dyebath as a function of di- 
mensionless dyeing time in adsorptive dyeing. ulL: (1) 20; (2) 10; (3) 5; (4) 2. 
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Fig. 3. Spatial distribution of mobil and immobilized dye species for reactive dyeing: (-) mobil; 
( -  - -) immobilized. 

Curve UlL Y 
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4 2 0.5 

So Y A ~  can be explicitly determined. 
The numerical values on the right side of Figure 2 represent the values of utot 

and Y A ~  for various dyebaths calculated by eqs. (30) and (31). As the bath ratio 
decreases, the total amount of adsorbed dye is increased, and the concentration 
and amount of remaining dye are decreased. If the ratio of utot at any 8 to utot 
at  8 - m, viz., WfOt, is plotted against y0.98 instead of 8, then the relationship 
between the two factors becomes independent of the bath ratio within an error 
of 5% as shown by a dot-dash line. The reason why an exponent on y is selected 
0.9 will be mentioned later. 

70.*e 
0.1 0.2 0.5 I 2 

0.1 0.2 0.5 I 2 5 10 20 50 e 
Fig. 4. Total fixation and dimensionless dye concentration in the dyebath as a function of di- 

mensionless dyeing time for reactive dyeing. ulL: (1) 20; (2) 10; (3) 5; (4) 2. 
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Fig. 5. Relationship between dimensionless time of half-dyeing and dyebath ratio for adsorptive 
and reactive dyeings. A.D. and R.D. stand for adsorptive and reactive dyeings, respectively. 

Typical examples of computational results on reactive dyeing are indicated 
as solid and broken curves in Figure 3, where the concentrations of mobile and 
immobilized dye species are plotted against the dimensionless position in the 
polymer phase. Figure 4 shows the time variation of the total fixation and the 
dye liquor concentration in the bath for various bath ratios. It is obvious that 
the dyeing time can be reduced by lowering the bath ratio. When the fractional 
fixation is plotted against y0.90 instead of 0 alone as in the case of adsorptive 
dyeing, the relationship between these two factors, which is shown by the dot- 
dash line, reduces to a single curve within an error of 8% irrespective of the bath 
ratio. 

It is concluded from above numerical analyses that the lower the bath ratio 
is, the higher the uptake or fixation at a given dyeing time. To make it clearer, 
the relationship between the time of half-dyeing and the bath ratio for adsorptive 
and reactive dyeings are shown in Figure 5. Here the time of half-dyeing is de- 
fined by the time required to reach a fixation of 50% of its final or equilibrium 
value. The dyestuff is fed stoichiometrically or 20% excess of its stoichiometrical 
value in advance. It is proved that the time of half-dyeing is proportional to the 
bath ratio to the power of about 0.9 within the present computational conditions. 
This fact is in contrast to the finding in the previous paper1 that in an infinite 
dyebath with the same dye concentration as the initial concentration in the finite 
bath, where the dye concentration is kept constant at  the initial value, the time 
of half-dyeing is inversely proportional to the concentration of dye. 

CONCLUSION 

The kinetic models for adsorptive and reactive dyeings in a finite bath were 
proposed on the basis of diffusion of dyestuff in pores within the polymer phase 
accompanied by adsorption and chemical reaction, respectively. The influence 
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of the dyebath ratio on the uptake or fixation was numerically analyzed. The 
time of half-dyeing is proportional to the dyebath ratio to the power of about 
0.9 within the present computational conditions. The relation of U,,JU~~, in the 
adsorptive dyeing or ftot in the reactive dyeing to dimensionless dyeing time t? 
multiplied by is independent of the bath ratio within an error of 5% or 

NOMENCLATURE 

concentration of dye in pore or polymer phase (mol/m3) 
concentration of reactive site in polymer phase (mol/m3) 
diffusion coefficient of dye in pore or polymer phase (m2/s) 
local fractional fixation in polymer phase 
total fractional fixation in polymer phase 
rate constant of second-order reaction (m3/mol-s) 
adsorption rate constant (m3/mol.s) 
desorption rate constant (l/s) 
adsorption equilibrium constant = k,/kd (m3/mol) 
half-width of polymer phase (slab) (m) 
kCs&^/DA 
kaqXL2/DA 
concentration of adsorbed dye (mol/m3) 
saturation concentration of adsorbed dye (mol/m3) 
dyeing time (s) 
time of half-dyeing (s) 
dye liquor volume per unit surface area of polymer phase (m3/m2) 
distance from surface of polymer phase (m) 
dimensionless concentration of dye in pore or polymer phase = CA/CAO 
dimensionless concentration of reactive site in polymer phase = Cs/Cso 

CAO/qX in adsorptive dyeing and uC~o/Cso in reactive dyeing 
voidage of polymer phase 
dimensionless dyeing time = DAt/L2 
dimensionless time of half-dyeing = DAtl/zL2 
stoichiometric factor appearing in reaction A + US - P 
dimensionless distance from surface of polymer phase = x / L  
dimensionless concentration of adsorbed dye = qA/qX 
degree of saturation of adsorbed dye in polymer phase = SoL qAdx/Lq$ = So1 wad4 

i p t s  Subsc 
A dye 
S substrate or reactive site 
0 initial value 
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